Auszug aus Wikipedia (https://de.wikipedia.org/wiki/Wahrscheinlichkeitsdichtefunktion):
In der Wahrscheinlichkeitstheorie ist die Wahrscheinlichkeitsdichtefunktion, oft kurz Dichtefunktion, Wahrscheinlichkeitsdichte oder nur Dichte (abgekürzt WDF oder pdf von engl. probability density function) genannt, ein Hilfsmittel zur Beschreibung einer stetigen Wahrscheinlichkeitsverteilung. Die Integration der Wahrscheinlichkeitsdichte über ein Intervall [a,b] ergibt die Wahrscheinlichkeit dafür, dass eine Zufallsvariable mit dieser Dichte einen Wert zwischen a und b annimmt. Die Wahrscheinlichkeitsdichte kann Werte größer als 1 annehmen und sollte nicht mit der Wahrscheinlichkeit selbst verwechselt werden.
Formal handelt es sich um eine Dichte bezüglich des Lebesgue-Maßes.
Während im diskreten Fall Wahrscheinlichkeiten von Ereignissen durch Aufsummieren der Wahrscheinlichkeiten der einzelnen Elementarereignisse berechnet werden können (ein idealer Würfel zeigt beispielsweise jede Zahl mit einer Wahrscheinlichkeit von einem Sechstel (1/6)), gilt dies nicht mehr für den kontinuierlichen Fall. Beispielsweise sind zwei Menschen kaum exakt gleich groß, sondern nur bis auf Haaresbreite oder weniger. In solchen Fällen sind Wahrscheinlichkeitsdichtefunktionen nützlich. Mit Hilfe dieser Funktionen lässt sich die Wahrscheinlichkeit für ein beliebiges Intervall – beispielsweise eine Körpergröße zwischen 1,80 m und 1,81 m – bestimmen, obwohl unendlich viele Werte in diesem Intervall liegen, von denen jeder einzelne die Wahrscheinlichkeit hat.
Die Dichtefunktion jeder Wahrscheinlichkeitsverteilung hat seine charakteristische grafische Form. Die grafische Darstellung der Dichtefunktion der Normalverteilung z.B. ist die bekannte Glockenkurve (siehe auch 19.17).